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Traffic on complex networks: Towards understanding global statistical properties
from microscopic density fluctuations
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We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense
traffic of particles on scale-free cyclic graphs. For a wide range of driving ratesR the traffic is stationary and
the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two
hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high
traffic density and at the jamming threshold. The degree of correlations systematically decreases with increas-
ing traffic density and eventually disappears when approaching a jamming densityRc . Already before jam-
ming we observe qualitative changes in the global network-load distributions and the particle queuing times.
These changes are related to the occurrence of temporary crises in which the network-load increases dramati-
cally, and then slowly falls back to a value characterizing free flow.
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I. INTRODUCTION

Microscopic dynamic processes and emergent statis
properties are two facets of complex dynamic systems
are closely connected, and for many systems understan
their interdependence is important for both prediction a
strategic planning. Usually detailed information is availab
about either the microscopic dynamics or the statistical pr
erties, but seldom both. Prominent examples include tra
noise on communication networks@1,2#, noisy signals in
driven disordered and self-organized systems@3#, and the
time series of price fluctuations in financial markets@4#. On
the other hand, emergent behavior in a statistical system
macroscopic scale can be described by~stable! statistical
laws, their sensitivity to relevant parameters of the dynam
can be studied and the type of global behavior may be
dicted. In this work we use a recently proposed model@5# to
study both the microscopic fluctuations of traffic time ser
on complex networks and the statistical properties of tra
port of individual particles. These particles can be thou
of, e.g., as information packets in the Internet or organi
tions, or proteins transported on the cytoskeleton of a c
We study how the statistical properties, both at a microsco
and macroscopic levels, vary with the particle creation r
R, i.e., traffic density.

A new class of networks, called scale free, has been
ognized as the most commonly observed network struct
which appears to be also the most stable~see, e.g., Refs
@6,7#!. In particular, communication networks such as t
Internet and the Web are scale-free networks with both
coming and outgoing link connectivity distribution obeying
power law with significant clustering and link correlation
@8–10#. A model graph with these properties, which we c
‘‘Web graph’’ was recently proposed@11#. For study of par-
ticle traffic on complex networks we recently introduced
model of simultaneous random walks on scale-free cy
and tree graphs@5,12#. In low particle density the distribu
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tions of particle transit times exhibit power-law dependen
with the exponents depending on the network structu
Other theoretical studies capture the essential propertie
the jamming transition and self-tuned driving on simpler
pologies, such as hierarchical trees@13# and square lattice
models@14,15#.

Due to finite processing capacities of nodes traffic que
occur especially at hub nodes, depending on the intensit
traffic. This means that the transit time for particles depe
not just on the distance between the sending and recei
node but also on the geometry and local traffic density@5#.
The distribution of transit times is important for netwo
efficiency and for estimating the risk of transport delay. Fo
given graph and a search algorithm, a fundamental quan
that contributes to the emergent transit time is the wait
time that a particle spends in queues along its path.

In Ref. @5# we considered different network topologie
and showed how the dilute, sparse topology of the netw
influences the transport on it. Different search algorith
were employed with low density traffic to quantify the ne
work’s performance. We have found that~i! low density traf-
fic is stationary;~ii ! away from the jamming transition th
distribution of transit times is power law due to the topolog
~iii ! the waiting times are small for low traffic density;~iv!
the Web-graph topology of a scale-free directed netw
with closed loops and a next-nearest-neighbor search s
egy results in efficient traffic with a large output rate whi
utilizes the hubs effectively. Consequently, compared
many other topologies the Web graph can support a h
volume of traffic before getting jammed.

In this paper we report on a complementary study.
consider the Web graph, and analyze the waiting time sta
tics and the time series of network load, which is defined
the number of particles on the network at a given time, as
traffic density is varied by increasing the creation or post
rateR. We also consider correlations in the time series of
network’s activity, i.e., the number of simultaneously acti
nodes in the network. The queuing of particles on differe
©2004 The American Physical Society02-1
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nodes is a consequence of a self-regulatory traffic of mu
ally interacting random walks sent to different specified d
tinations on the graph. Throughout the paper we use the t
load in a functional sense, as defined above. It should no
confused with a topological meaning which is sometim
used for the number of minimal paths through a node@16# or
betweenness@17#.

The paper is arranged as follows. In the following sect
we describe the model in detail, in Sec. III we consider
correlation in the load time series, and in Sec. IV the dis
butions of waiting times and network loads are presented
Sec. V the work is summarized.

II. GRAPH STRUCTURE AND TRAFFIC RULES

The Web graph is a directed graph grown with micr
scopic dynamic rules proposed in Ref.@11#, which were
originally intended to model the evolution of the World Wid
Web. It belongs to a class of models with preferential atta
ment of nodes@6,7#. In addition to preferential attachment o
newly added nodes, the rules of Web-graph evolution incl
rewiring of preexisting links while the graph grows, whic
results in an emergent structure with inhomogeneous sc
free ordering in both incoming and outgoing links and
number of closed cycles. An example of such an emerg
structure of a Web graph is shown in Fig. 1.

A detailed characterization of the topology of this W
graph, both on a local and a global level, together with
discussion of the origin of scaling laws in this system, can
found in Refs.@11,18–21#. The observed power-law increas
of local connectivity in time@19# can be linked to the power
law distributions for ingoing and outgoing links, each wi
their own scaling exponents@11#. Other topological proper-
ties which are relevant for traffic on the graph were a
studied, in particular the number of paths through a giv

FIG. 1. ~Color online! Web graph consisting ofN5L51000
nodes and links.
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node as a measure of betweenness was found to ha
power-law decay@21# and the degree of clustering and th
correlations between in and out connectivity@20# resemble
the properties measured in empirical studies of the Web@9#
and the Internet@10#.

An important feature of the graph topology is the occu
rence of two types of hub nodes~known as hub and authority
nodes in the real Web!. These are nodes with large incomin
link connectivity and nodes with large outgoing link conne
tivity. These two hubs have many links between them a
impose what we call a superstructure which has a str
influence on the transport processes on the graph@5#.

We grow the graph to a given size (N5L51000 nodes
and links! and fix the connectivity matrix after growing. W
then model the traffic of particles on that graph@5,12#. Par-
ticles are created with a given rateR ~particles per time in-
terval! at randomly selected nodes and each is given a
domly selected destination node where it should
delivered. We select these pairs of nodes within the gi
component of the graph. Particles move through the gr
simultaneously searching for their respective destination
dresses. To navigate particles, each node performs a
search in its next-nearest neighborhood, and if the partic
destination is found within the searched area, it is delive
to the node’s neighbor linked to the destination node. Alt
natively, the particle moves to a randomly selected neigh
This search algorithm was shown@5# to perform especially
well on the Web graph, where it can effectively make use
the hub nodes. In particular, it was shown that it performs
times better than a random diffusion on the same graph a
times better than the same algorithm on a scale-free
graph with the same in-link connectivity.

Additional rules are necessary to regulate the traffic.
assign a buffer (H51000) to each node in the network
When the buffer at a selected node is full the node can
accept more particles and the particle waits for the next
portunity to be delivered. Due to the simultaneous movem
of particles queues can be formed, especially at nodes
large connectivity. Here we apply the LIFO~last-in-first-out!
queuing discipline at each queue. When a particle arrive
its destination it is removed from the network. For simplici
in this work we allow particles to move along outgoing link
and against incoming links with equal probability. Details
the implementation of the numerical code are given in R
@20#.

III. CORRELATIONS IN NETWORK-LOAD TIME SERIES

Each particle follows its own~random! path from the ori-
gin to its destination. The total time spent along the path,
transit time, depends on both the topology and the time t
particle spends waiting in queues along that path. Statis
of transit times on different topologies with different sear
algorithms were studied in Ref.@5#. With an efficient search
transit times can be short, however, some particles get
remote areas of the graph, from which it takes a long time
escape; this results in a power-law distribution of tran
times.

With increasing posting rates the interaction between p
ticles, i.e., queueing in hubs, becomes more important
2-2
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results in longer queuing times. In effect, the number of p
ticles on the network fluctuates in time in a way that is ch
acteristic of the network structure and the search algorit
and depends on the posting rate and the buffer capacity
find that for a wide range of posting ratesR the traffic is
stationary with the average network output~number of par-
ticles delivered per time step! balancing the input rateR. The
load fluctuates around an average value, which increa
with R. Eventually, for largeR.Rc a permanent increase i
the number of particles occurs, indicating that the networ
jammed. In Fig. 2~a! we show an example of the network
load time series for two different posting rates. For low po
ing rates queuing effects are small and transit times are
erally short. Consequently, the total number of particles
the network fluctuates around a small average value. F
much larger posting rate the flow is still stationary but t
average number of particles is also much higher. In addit
the character of the fluctuations changes, with occasio
dramatic increases in the load, which then dissipate ov
relatively long time period. We considered very long tim
series in order to verify that the particle flow which contai
these temporary crises is in fact stationary. When the pos
rate is increased over a certain value (R'0.4 in this particu-
lar case! the network load exhibits a systematic increa
signaling jamming in the network.

The power spectra of the network-load time series
shown in Fig. 2~b! for several values ofR. When posting
rates are such that stationary flow~with or without crises!
occurs, the work-load time series exhibitantipersistence,
with the exponentf of the power spectrumS( f ); f 2f in-
creasing withR from f51.2 towardsf52. This antipersis-

FIG. 2. ~Color online! ~a! Network-load time series in transpo
on the Web graph for two different posting ratesR representing the
stationary free flow (R50.1, bottom line! and flow with a tempo-
rary crisis (R50.3, top line!. ~b! Power spectrum of the load tim
series forR50.005, 0.1, 0.2, 0.3, and 0.4~bottom to top!. Data are
log binned. Fit lines have slopesf51.18, 1.20, 1.30, 1.76, an
1.98. Errors are within60.02.
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tence in the lowR regime may be attributed to the regulato
role of the superstructure which is associated with the t
hub types in the network. When the particle density is hi
queues are formed at these nodes and the queuing part
although still in transit, are not contributing to the random
ness of the load. Moreover, when a particle queuing at a
gets its turn to move, it gets quickly to its destination, whi
is often found in the next-nearest neighborhood surround
one of the hubs, and is then removed from the netwo
Another situation appears when the queue at a hub nod
full. Then the dynamics is reduced toone particle out, one
particle in, which entirely destroys the correlations in th
transport. In the jammed flow regime the temporal corre
tions in the network load are entirely lost~reflectedf'2
within the error bars!.

Thus the main properties of the traffic~and jamming! are
related to the hubs and their associated structure. To fur
investigate this effect, we have also studied how the activ
is distributed over the network. In Fig. 3 we show the pow
spectrum of the number of active nodes~nonempty nodes!
for varying posting ratesR. In the free flow regime at low
posting rate the time series of the network’s activity is a
antipersistentwith a well defined slope in the power spe
trum. For intermediate posting rates, where particle den
is increased and temporary crises occur in the flow, a n
gradient starts to develop in the low frequency range. Ev
tually, at high particle density, two distinct types of behav
occur for the low and for high frequencies, indicating tha
part of the network has entered the jammed regime.

IV. WAITING-TIME AND NETWORK-LOAD
DISTRIBUTIONS

The dependence on posting rates of the temporal fluc
tions in the network load and activity, as observed in t
preceding section, is also found in the averaged statist

FIG. 3. ~Color online! Power spectrum of network’s activity
~number of simultaneously active nodes! for different values of
posting ratesR. Data are log-binned and the upper two curv
shifted vertically for clarity of the plot. Full lines have slopes
21.2, dashed-dotted line21.1, and two dotted lines are indicatin
two slopes of20.36 and 1.36.
2-3
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properties. The probability density function of the over
network load, shown in Fig. 4, is obtained from a histogra
from time series like those in Fig. 2 and averaging ove
number of network configurations.

At very low traffic density queuing occurs rarely. For in
termediate densities queuing becomes more important
consequently the load distribution gets a tail. The large ov
all load appears—although with smaller probability—to
related to the volatile fluctuations discussed above. In a
tion, the dominant part of the distribution becomes of lo
normal type with the mean shifted towards higher valu
with increasedR. On approaching the jamming limit the ta
of the distribution becomes more pronounced, sugges
that queues and thus waiting times increase in a large pa
the network. The distribution of waiting times of individua
particles shows substantial changes when temporary
ming in the network starts occurring more frequently. In F
5 we show the distribution of waiting times when the posti
rate is varied from low to intermediateR, where the flow is
still stationary.

FIG. 4. ~Color online! Probability density function of the net
work load in the stationary regime with free flow and flow wi
temporary crises. Data averaged over 100 network realizations
are log binned.

FIG. 5. ~Color online! Distribution of waiting times of indi-
vidual particles for varying posting ratesR in the free flow and flow
with temporary crisis. Data collected from a particle which mov
within a computation time-window of 200 000 time-steps and
log binned.
03610
l

a

nd
r-

i-
-
s

g
of

-
.

The distribution is taken from particles which mov
within a total time window of up to 200 000 time step
When crises start to occur the waiting time distributi
changes from simple power law to a generalized Cauc
type distribution with a slope varying again with the posti
rate R. There is robustness in the system in the sense
minor changes to the queuing discipline or the buffer si
do not lead to a qualitative difference in these results. Ho
ever, if the queuing discipline is changed from LIFO to FIF
~first in first out! then the power dependence of the waitin
time distribution disappears. In particular, for the range
posting rates below jamming, for FIFO queuing a gap in
waiting-time distributions appears, separating the power-la
like tail for long waiting times at hubs, from the short wai
ing times, which are found at most of the other nodes in
network. In LIFO queuing the waiting time at a given node
dynamically conditioned by incoming packet streams fro
all neighboring nodesafter arrival of the packet. In contrast
much weaker dependence on the local network structur
incorporated in the FIFO-queuing mechanism, where
waiting time is exactly given by the queue length of th
nodeat arrival of the packet, independently of how long
took the network to build the queue@5#. However, the transit-
time distribution, which integrates waiting times over ma
nodes along the packet trajectory on the network, remain
power law for both queuing mechanisms at low and mod
ateR @5,12#.

V. CONCLUSIONS

We have performed an extensive study of both the mic
scopic dynamics~time series! and macroscopic probability
density functions of network load and waiting times of pa
ticles in a model of transport on Web graphs. Particles m
using a local search algorithm with next-nearest-neigh
signaling, which uses the underlying network topology e
ciently. We have demonstrated how network functi
changes when posting rates are altered.

Statistical properties of both the microscopic dynam
and the probability density functions suggest that there oc
three flow regimes, depending on the overall traffic dens
stationary free flow at low posting rates; stationary flow w
temporary jams which are subsequently slowly dissipated
the system, and jammed flow at high posting rates. O
analysis applies to the stationary free flow and flow w
temporary crisis, whereas we can recognize the approac
jamming transition from the low-density side. In particula
we find that the jamming threshold is marked by the loss
temporal correlations in the work-load time series and
permanent increase of the overall network load. The wait
times of packets diverge on approaching the jammed fl
therefore the statistical analysis of waiting times cannot
carried out in the vicinity of the transition.

The superstructure associated with the two types of h
in the network plays an essential role in determining
properties of the traffic. In the low particle density regime
contributes to efficient free flow and the clearance of tem
rary jamming through self-regulating mechanisms wh
may be directly measured by the degree of antipersistenc
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e
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the work-load time series. However, at high particle dens
the hubs are the first nodes to jam, forcing a crucial par
the network structure to enter a slow-traffic~jammed! re-
gime, whereas the rest of the network, which carries m
less traffic, may continue to function normally. The hub w
higher connectivity is likely to jam first. Then the netwo
continues to function with the other hub until it also jam
eventually causing the congestion to spread over the as
ate structure. In principle, the relative distance between h
plays the role in spreading of the congestion, e.g., when h
are far apart the jamming in two parts of the network w
occur almost independently. In our model the two-hub str
ture is an emergent feature and the distance between
cannot be controlled by the network growth rules in o
present setting. However, due to strong clustering prope
the relative distance between the hubs is rather short and
most network realizations—within the reach of the ne
.

en
n,

e
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nearest-neighbor search. Thus highly organized scale-
networks, containing these superstructures, operate mor
ficiently than conventional networks for a wide range
driving conditions. However, their advantage may becom
weak point when the conditions change, i.e., when the tra
density increases over a certain limit. This property of traf
may also be important to prevent dynamical attacks wh
target hubs, such as denial of service attacks to highly c
nected servers. Our overall conclusion is that although
particular topology of the Web graph is essential for its e
cient operation under normal conditions, the same topol
may also be a weakness under different conditions, refle
by vanishing anticorrelations in network-load time series
seems clear that to assess the vulnerability of a networ
different types of attack, one cannot just consider the top
ogy of a network, one must consider how that topology
fluences particle transport on it.
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